Differences between IEC 61850-9-2, 9-2LE and IEC 61869-9

Presented by: Henri GRASSET

Life Is On

IEC 61850-9-2 or IEC 61850-9-2 LE?

Differences between IEC 61850-9-2, 9-2LE and IEC 61869-9

- IEC 61850-9-2 is a standard
 - Definition of different ways to structure the Process bus communication.
 - Does not allow interoperability as too much open
- IEC 61850-9-2 LE is a guideline
 - Specify very few options to structure the Process bus communication:
 - "It further clarifies uncertainties with respect to the interpretation of the standards and/or to precisely define what options to choose in case the standards permit a choice of options."
 - Does allow communication interoperability between manufacturers, ex:
 - Fiber optic transmission system 100Base-FX full duplex with ST or MTRJ,
 - Dataset as 4 I + 4 U, 80 or 256 samples per period,
 - Operation modes,
 - Synchronization, etc...

confidential Propert Dock in the interoperability as do not specify compatible contents/Data

IEC 61869-9 1/2

Differences between IEC 61850-9-2, 9-2LE and IEC 61869-9

The IEC 61869-9 standard:

- Replaces IEC 60044-8 digital solution.
- Provides a product standard for instrument transformers with a digital interface according to 61850.
- Includes backward compatibility for the UCA International Users Group *Implementation Guideline* for Digital Interface to Instrument Transformers Using IEC 61850-9-2.
- Uses IEC 61588 (PTP) for time synchronization, with an option for 1PPS.

IEC 61869-9 2/2

Differences between IEC 61850-9-2, 9-2LE and IEC 61869-9

IEC 61850-9-2 LE v.s. IEC 61869-9

Differences between IEC 61850-9-2, 9-2LE and IEC 61869-9

IEC 61869-9 is backward compatible with 9-2 LE communication •

		IEC 61850-9-2 LE	IEC 61869-9			
•	Fiber optic transmission	100Base-FX full duplex	Same (+ 1Gbit/s)			
•		ST or MTRJ,	Duplex LC or RJ45			
•	Dataset	4 I + 4 U	FfSsliUu			
•	Protection sampling rate	80 samples per period	4800 Hz			
•	Measurement sampling rate	256 samples per period	14400 Hz			
•	Protection comm. ASDU	1 (≈1400 bits)	2 (≈1500 bits)*			
•	Measurement comm. ASDU	8	6			
•	Synchronization	1 pps	IEC 61588			
•	Nb of "Nodes" (50% of load)	7 at 60Hz/8 at 50Hz	around 14*			
•	Delay time* (td) (Protection)	none	2 ms			
•	Delay time* (<i>t</i> d) (Quality)	none	10 ms			
•	Rated conformance*	none	a to d			
	N Drenewly of Cohneider Flootnin Deco F					

Confidential Property of Schneider Electric | Page 5 *: "same" size of the frame but frames are sent twice slower thus doubles the network capability

IEC 61869-9 definitions

Definitions

- Delay time* (td)
 - Delay time (*t*d) shall be measured as the difference between the time encoded by the SmpCnt and the time the message timestamp point appears at the digital output.
- Variants
 - To facilitate interoperability, only a limited variability is permitted for naming, message structure, sample rate, analogue signal content and scaling. **FfSsliUu**
 - f is the digital output sample rate expressed in samples per second
 - s is the number of ASDUs (samples) contained in a sampled value message
 - i is the number of current quantities contained in each ASDU (max is 24*)
 - u is the number of voltage quantities contained in each ASDU (max is 24*)
 - Examples:
 - F4000S1I4U4 describes the 9-2LE MSVCB01 sampled values with 50 Hz nominal system frequency.
 - F12800S8I4U4 describes the 9-2LE MSVCB02 sampled values with 50 Hz nominal system frequency.
 - F4800S2I8U0 describes sampled values with 4800 samples per second, two ASDU (samples) per message, 8 currents, and no voltages.

*: at 100Mbit/s

IEC 61869-9 definitions

Conformance classes

- The conformance classes may be summarized as follows:
 - class a: the minimal set of services required to transmit MU data using sampled values;
 - class b: "class a" capabilities plus the minimal set of services required to support GOOSE messages;
 - class c: "class b" capabilities plus the implementation of the IEC 61850 series' information model selfdescriptive capabilities;
 - class d: "class c" capabilities plus services for file transfer and either one or more of un-buffered reporting and buffered reporting, or logging.

IEC 61869-9 definitions

Digital Output Standard Sample Rates

Digital output sample rates [Hz]	Number of ASDUs per frame	Digital output publishing rate [frames/s]	Notes
4 000	1	4 000	Legacy, for use on 50 Hz systems.
4 800	2	2 400	Preferred rate for general measuring and protective accuracy classes, regardless of the power system frequency
4 800	1	4 800	Legacy, for use on 60 Hz systems, or 50 Hz systems with 96 samples per nominal system frequency cycle
5 760	1	5 760	Legacy, for applications on 60 Hz systems with 96 samples per nominal system frequency cycle
12 800	8	1 600	Deprecated, only for use on 50 Hz systems
14 400	6	2 400	Preferred rate for quality metering accuracy class, regardless of the power system frequency
15 360	8	1 920	Deprecated, only for use on 60 Hz systems
96 000	1	96 000	Preferred rate for HV DC applications[VS3]

Confidential Property of Schneider Electric | Page 8

Life Is On Schneider

IEC 61869 definitions

Frequency response

- Frequency response
 - Frequency response mask for metering accuracy class1 and SAMU (fr = 60 Hz, fs = 4800 Hz)

Questions?

Process Bus

Why it did not commercially work?

The technical issues to be solved were:

- The time synchronization of measurements:
 - 1 PPS additional link per SAMU AND from a unique clock (less availability)
 - Now solved with **doubled PTP** clocks (IEEE 1588/IEC 61588) through Eth.
- The Ethernet communication:
 - 1 Ethernet link per IED AND through "single" switch (decrease of availability)
 - Now solved via redundancy through IEC 62439 PRP or HSR
- The harmonized degree of accuracy of the Sampled Values
 - 9-2 LE was not standardizing the value sent (no interoperability)
 - Soon solved by IEC 61869-13 (expected for 2019).

Clock Station Bus SNTP Process Bus IED IEC 61850-8-1 IEC 61850-9-2 LE 1 PPS AMU $-\infty$ Clock 1/2 Station Bus PTP Process Bus IEC 61850-9-2 & IEC 61869 IEC 61850-8-1 & PTP IED HSR (Or PRP) SAMU BIED $-\infty$ Life Is On

Process Bus

Takeaway

- 1. The technical issues to be solved were:
 - The time synchronization of the measurements, now solved with PTP (IEC 61588)
 - The communication redundancy need, now solved by IEC 62439 PRP (or HSR)
 - The harmonized degree of accuracy of the Sampled Values soon solved by IEC 61869 full series.
- 2. The Process Bus is made of Ethernet networks either single or redundant, through which the following frames flow:
 - IEC 61850-9-2 Sampled Values (following IEC 61869 behavior)
 - IEC61850-8-1 GOOSE messages (mainly Binary but Analog is allowed),
 - PTP (IEC 61588) time synchronization.

Process Bus

Takeaway

- 3. These Ethernet networks can be either virtual or physical networks
 - But the availability, the operators understanding of the application and the maintenance provided by physical segregation is much higher than a common network supporting multiple VLANs.
- 4. **Time** synchronization is not an issue if SAMUs are rightly connected.
- 5. Except for busbar protection with more than 7 CTs per busbar, the 100Mbits/s Process Bus fits most of the applications.
- 6. The optimum solution would be 100Mbit/s "PRP Process Bus" or a 1Gbit/s "HSR Process Bus" to link all the feeders of a substation.

List of standards

- IEC 61588 (PTP)
 IEC 61850-8-1 and -9-2
- 3. IEC 61869-6 and -9 and -13
- 4. IEC 62271-3 (BIED/SIED)
- 5. IEC 62439 (PRP or HSR)

Questions?

Process Bus protocols

What is flowing through Ethernet?

- IEC 61850-9-2 (not IEC 61850-9-2 LE) for Sampled Values "SV"
 - Samples of Current measurements (CT)
 - Samples of Voltage measurements (VT)
- It is also possible to send measurements via "Analog" GOOSE
 - Example: Voltage phase angles and magnitudes for synchrocheck
- IEC 61850-8-1 "GOOSE" messaging service for Digital I/Os
 - Status position of Switch disconnector (SW)
 - Status position of Circuit Breaker (CB)
 - Trip signals from protections to CBs (Trp)
 - Commands from DCS (open, close)
 - Others (monitoring status reports, health...)

Process Bus protocols

What is flowing through Ethernet

- Precise Time Protocol (PTP) (IEEE 1588/IEC 61588) for Ethernet based time sync.
 - (Time) synchronization (to get 1us or 5us accurate time tagged samples)
 - IEC 62439 Time sync for HSR/PRP redundant networks
- IEC 62439-4 for Ethernet communication redundancy
 - PRP: Parallel Redundancy Protocol (Double star)
 - HSR: High-availability Seamless Redundancy (Ring)
- IEC 61869-9 and IEC 61869-13 for Mainly Differential protection algorithm interoperability
 - 9-2 LE described the Ethernet frame definition, not the sampled Values definition
 - 9-2 LE is already superseded by IEC 61869-9

Life Is On Schneider

THANK YOU.

Confidential Property of Schneider Electric | Page 18

Life Is On Schneider

Life Is On Schneider